Game Physics

Game and Media Technology Master Program - Utrecht University

Dr. Nicolas Pronost

Soft body physics

Soft bodies

- In reality, objects are not purely rigid
- for some it is a good approximation
- but if you hit them with enough force, they will deform or break down
- In a game, you often want to see soft bodies (i.e. deformable objects)
- car body, anything you punch or shoot at, etc.
- piece of cloth, flag, paper sheet, etc.
- snow, mud, lava, liquid, etc.

Elasticity

- Elasticity is the primary concept in soft body physics
- Property by which the body returns to its original shape after the forces causing the deformation are removed
- A plastic rod can easily be bended, and returned to its original form
- A steel rod is difficult to bend, but can also return to its original form

Stress

- The stress within an object is the magnitude of an applied force divided by the area of its application - large value when the force is large or when the surface is small
- It is a pressure measure σ and has the unit Pascal $P a=N / m^{2}$
- Example
- the stress on the plane is $\sigma=m g /\left(\pi r^{2}\right)$

Strain

- The strain on an object ϵ is the fractional deformation caused by a stress
- dimensionless (change in dimension relative to original dimension)
- measures how much a deformation differs from a rigid body transformation
- negative if compression, zero if rigid body transformation, positive if stretch
- Example
- the strain on the

Body material

- Stress and strain do not contain information about the specific material (i.e. deformation behavior) to which a force is applied
- The amount of stress to produce a strain does
- Therefore we can model it by the ratio of stress to strain
- usually in a linear direction, along a planar region or throughout a volume region
- Young's modulus, Shear modulus, Bulk modulus
- they describe the different ways the material changes shape due to stress

Young's modulus

- The Young's modulus is defined as the ratio of linear stress to linear strain

$$
Y=\frac{\text { linear stress }}{\text { linear strain }}=\frac{F / A}{\Delta L / L}
$$

- Example

Shear modulus

- The Shear modulus is defined as the ratio of planar stress to planar strain

$$
S=\frac{\text { planar stress }}{\text { planar strain }}=\frac{F / A}{\Delta L / L}
$$

- Example

Bulk modulus

- The Bulk modulus is defined as the ratio of volume stress to volume strain (inverse of compressibility)

$$
B=\frac{\text { volume stress }}{\text { volume strain }}=\frac{\Delta P}{\Delta V / V}
$$

- Example

Poisson's ratio

- The Poisson's ratio is the ratio of transverse to axial strain

$$
v=-\frac{d \text { transverse strain }}{d \text { axial strain }}
$$

- negative transverse strain in axial tension, positive in axial compression
- negative axial strain in compression, positive in tension
- equals 0.5 in perfectly incompressible material
- If the force is applied along x then we have

$$
v=-\frac{d \epsilon_{y}}{d \epsilon_{x}}=-\frac{d \epsilon_{z}}{d \epsilon_{x}}
$$

Poisson's ratio

- Example of a cube of size L

$$
\begin{gathered}
L \\
d \epsilon_{x}=\frac{d x}{x} d \epsilon_{y}=\frac{d y}{y} d \epsilon_{z}=\frac{d z}{z} \\
-v \int_{L}^{L+\Delta L} \frac{d x}{x}=\int_{L}^{L-\Delta L^{\prime}} \frac{d y}{y}=\int_{L}^{L-\Delta L^{\prime}} \frac{d z}{z} \Leftrightarrow \\
\left(1+\frac{\Delta L}{L}\right)^{-v}=1-\frac{\Delta L^{\prime}}{L} \Leftrightarrow v \approx \frac{\Delta L^{\prime}}{\Delta L}
\end{gathered}
$$

Continuum mechanics

- A deformable object is defined by its rest shape and the material parameters
- In the discrete case, the object M is a discrete set of points with material coordinates $m \in M$ that samples the rest shape of the object
- When forces are applied, the object deforms
- each m moves to a new location $x(m)$
$-u(m)=x(m)-m$ can be seen as the displacement vector field
- e.g. a constant displacement field is a translation of the object

Continuum mechanics

- Material coordinate P with position X is deformed to p with position x
- Material coordinate Q with position $X+d X$ is deformed to q with position $x+d x$
- If the deformation is very small (i.e. linear deformation in interval Δt), the displacements of the material coordinates can be described by

$$
\begin{aligned}
& x+d x=X+d X+u(X+d X) \\
& d x=X-x+d X+u(X+d X) \\
& d x=d X+u(X+d X)-u(X) \\
& d x=d X+d u
\end{aligned}
$$

Continuum mechanics

Continuum mechanics

- $d u$ is the relative displacement vector
- It represents the relative displacement of Q with respect to P in the deformed configuration
- Now if we assume that Q is very close to P and that the displacement field is continuous, we have

$$
u(X+d X)=u(X)+d u \approx u(X)+\nabla u * d X
$$

where the gradient of the displacement field is (in 3D) the 3×3 matrix of the partial derivatives of u

$$
\nabla u=\left[\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right] \text { where } u=(u, v, w)^{T}
$$

Continuum mechanics

- With that definition of the relative displacement vector, we can calculate the relative position of q

$$
\begin{aligned}
& d x=d X+d u=d X+\nabla u * d X \\
& d x=(I+\nabla u) d X=F * d X
\end{aligned}
$$

- We call F the material deformation gradient tensor
- It characterizes the local deformation at a material coordinate, i.e. provides a mapping between the relative position at rest and the relative position after deformation

Strain and stress

- The strain and stress are related to the material deformation gradient tensor F, and so to the displacement field u
- In interactive applications, we usually use the GreenCauchy strain tensors

$$
\begin{gathered}
\epsilon_{G}=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}+(\nabla u)^{T} \nabla u\right) \\
\epsilon_{C}=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right)
\end{gathered}
$$

- And stress tensor from Hooke's linear material law

$$
\sigma=E * \epsilon
$$

where E is the elasticity tensor and depends on the Young's modulus and Poisson's ratio (and more)

Modeling soft bodies

- Two types of approaches are possible to simulate deformable models

- Lagrangian methods (particle-based)

- a model consists of a set of moving points carrying material properties
- convenient to define an object as a connected mesh of points or a cloud of points, suitable for deformable soft bodies
- examples: Finite Element/Difference/Volume methods, Massspring system, Coupled particle system, Smoothed particle hydrodynamics
- Eulerian methods (grid-based)
- scene is a stationary set of points where the material properties change over time
- boundary of object not explicitly defined, suitable for fluids

Finite Element Method

- FEM is used to numerically solve partial differential equations (PDEs) by discretization of the volume into a large finite number of disjoint elements (3D volumetric mesh)
- The PDE of the equation of motion governing dynamic elastic materials is given by

$$
\rho * a=\nabla \cdot \sigma+F
$$

where ρ is the density of the material, a is the acceleration of the element, $\nabla \cdot \sigma$ is the divergence of stress (internal forces) and F the external forces

Finite Element Method

- First the deformation field u is estimated from the positions of the elements within the object
- Given the current local strain, the local stress is calculated
- The equation of motion of the element nodes is obtained by integrating the stress field over each element and relating this to the node accelerations through the deformation energy

$$
E=\int_{V} \epsilon(m) * \sigma(m) d m
$$

Finite Differences Method

- If the object M is sampled using a regular spatial grid, the PDE can be discretized using finite differences (FD)
- easier to implement that FEM
- difficult to approximate complex boundaries
- Deformation energy comes from difference between metric tensors of the deformed and original shapes
- Derivative of this energy is discretized using FD
- Finally semi-implicit integration is used to move forward through time

Finite Volume Method

- In the Finite Volume method, the nodal forces are not calculated from the derivation of the deformation energy
- But first internal forces f per unit area of a plane (of normal n) are calculated from the stress tensor

$$
f=\sigma * n
$$

- The total force acting on a face A of an element is

$$
f_{A}=\int_{A} \sigma d A=A * \sigma * n
$$

for planar element faces (stress tensor constant within an element)

- By iterating on all faces of an element, we can then distribute (evenly) the force among adjacent nodes

Boundary Element Method

- The boundary element method simplifies the finite element method from a 3D volume problem to a 2D surface problem
- PDE is given for boundary deformation
- only works for homogenous material
- topological changes more difficult to handle

Mass-Spring System

- An object consists of point masses connected by a network of massless springs
- The state of the system is defined by the positions x_{i} and velocities v_{i} of the masses $i=1 \cdots n$
- The force f_{i} on each mass is computed from the external forces (e.g. gravity, friction) and the spring connections with its neighbors
- The motion of each mass point $f_{i}=m_{i} a_{i}$ is summed up for the entire system in

$$
M * a=f(x, v)
$$

where M is a $3 n \times 3 n$ diagonal matrix

Mass-Spring System

- The mass points are usually regularly spaced in a 3D lattice
- The 12 edges are connected by structural springs - resist longitudinal deformations
- Opposite corner mass points are connected by shear springs
- resist shear deformations
- The rest lengths define the rest shape of the object

Mass-Spring System

- The force acting on mass point i generated by the spring connecting i and j is

$$
f_{i}=K s_{i}\left(\left|x_{i j}\right|-l_{i j}\right) \frac{x_{i j}}{\left|x_{i j}\right|}
$$

where $x_{i j}$ is the vector from positions i to j, K_{i} is the stiffness of the spring and $l_{i j}$ is the rest length

- To simulate dissipation of energy along the distance vector, a damping force is added

$$
f_{i}=K d_{i}\left(\frac{\left(v_{j}-v_{i}\right)^{T} x_{i j}}{x_{i j}^{T} x_{i j}}\right) x_{i j}
$$

Mass-Spring System

- Intuitive system and simple to implement
- Not accurate as does not necessarily converge to correct solution
- depends on the mesh resolution and topology
- spring constants chosen arbitrarily
- Can be good enough for games, especially cloth animation
- as can have strong stretching resistance and weak bending resistance

Coupled Particle System

- Particles interact with each other depending on their spatial relationship
- Referred to as spatially coupled particle system
- these relationships are dynamic, so geometric and topological changes can take place
- Each particle p_{i} has a potential energy $E_{P i}$ which is the sum of the pairwise potential energies between the particle p_{i} and the other particles

$$
E_{P i}=\sum_{j \neq i} E_{P i j}
$$

Coupled Particle System

- The force f_{i} applied on the particle at position p_{i} is

$$
f_{i}=-\nabla_{p_{i} E_{P i}}=-\sum_{j \neq i} \nabla_{p_{i} E_{P i j}}
$$

where $\nabla_{p_{i} E_{P i}}=\left(\frac{d E_{P i}}{d x_{i}}, \frac{d E_{P i}}{d y_{i}}, \frac{d E_{P i}}{d z_{i}}\right)$

- To reduce computational costs, interactions to a neighborhood is used
- potential energies weighted according to distance to particle

Smoothed Particle Hydrodynamics

- SPH uses discrete particles to compute approximate values of needed physical quantities and their spatial derivatives
- obtained by a distance-weight sum of the relevant properties of all the particles which lie within the range of a smoothing kernel
- Reduces the programming and computational complexity
- suitable for gaming applications

Smoothed Particle Hydrodynamics

- The equation for any quantity A at any point r is given by

$$
A(r)=\sum_{j} m_{j} \frac{A_{j}}{\rho_{j}} W\left(\left|r-r_{j}\right|, h\right)
$$

- where W is the smoothing kernel (usually Gaussian function or cubic spline) and h the smoothing length (max influence distance)
- for example the density can be calculated as

$$
\rho(r)=\sum_{j} m_{j} W\left(\left|r-r_{j}\right|, h\right)
$$

- It is applied to pressure and viscosity forces, while external forces are applied directly to the particles

Smoothed Particle Hydrodynamics

- The spatial derivative of a quantity can be calculated from the gradient of the kernel
- the equations of motion are solved by deriving forces
- By varying automatically the smoothing length of individual particles you can tune the resolution of a simulation depending on local conditions
- typically use a large length in low particle density regions and a smaller length in high density regions
- Easy to conserve mass (constant number of particles) but difficult to maintain incompressibility of the material

Eulerian Methods

- Eulerian methods are typically used to simulate fluids (liquids, smoke, lava, cloud, etc.)
- The scene is represented as a regular voxel grid, and fluid dynamics describes the displacements
- we apply finite difference formulation on the voxel grid
- the velocity is stored on the cell faces and the pressure is stored at the center of the cells
- Heavily rely on the Navier-Stokes equations of motion for a fluid

Navier-Stokes equations

- They represent the conservation of mass and momentum for an incompressible fluid

$$
\nabla \cdot u=0
$$

$-u_{t}$ is the time derivative of the fluid velocity (the unknown), p is the pressure field, v is the kinematic viscosity, f is the body force per unit mass (usually just gravity ρg)

Navier-Stokes equations

- First f is scaled by the time step and added to the current velocity
- Then the advection term $u \cdot \nabla u$ is solved
- it governs how a quantity moves with the underlying velocity field (time independent, only spatial effect)
- it ensures the conservation of momentum
- sometimes called convection or transport
- solved using a semi-Lagrangian technique

Navier-Stokes equations

- Then the viscosity term $\nabla \cdot(v \nabla u)=v \nabla^{2} u$ is solved
- it defines how a cell interchanges with its neighbors
- also referred to as diffusion
- viscous fluids can be achieved by applying diffusion to the velocity field
- it can be solved for example by finite difference and an explicit formulation
- 2-neighbor 1D:

$$
u_{i}(t)=v * \Delta t *\left(u_{i+1}+u_{i-1}-2 u_{i}\right)
$$

- 4-neighbor 2D:

$$
u_{i, j}(t)=v * \Delta t *\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}\right)
$$

- Taking the limit gives indeed $v \nabla^{2} u$

Navier-Stokes equations

- Finally, the pressure gradient is found so that the final velocity will conserve the volume (i.e. mass for incompressible fluid)
- sometimes called pressure projection
- it represents the resistance to compression $-\nabla p$

Navier-Stokes equations

- We make sure the velocity field stays divergencefree with the second equation $\nabla \cdot u=0$, i.e. the velocity flux of all faces at each fluid cell is zero (everything that comes in, goes out)
- The equation $u(t+\Delta t)=u(t)-\Delta t \nabla p$ is solved from its combination with $\nabla \cdot u=0$, giving

$$
\begin{gathered}
\nabla \cdot u(t+\Delta t)=\nabla \cdot u(t)-\Delta t \nabla \cdot(\nabla p)=0 \\
\Leftrightarrow \Delta t \nabla^{2} p=\nabla \cdot u(t)
\end{gathered}
$$

with which we solve for p, then plug back in the $u(t+\Delta t)$ equation to calculate the final velocity

Navier-Stokes equations

- Compressible fluids can also conserve mass, but their density must change to do so
- Pressure on boundary nodes
- In free surface cells, the fluid can evolve freely ($p=0$)
- so that for example a fluid can splash into the air
- Otherwise (e.g. in contact with a rigid body), the fluid cannot penetrate the body but can flow freely in tangential directions $u_{\text {boundary }} \cdot n=u_{\text {body }} \cdot n$

End of
 Soft body physics

Next
Physics engine design and implementation

